An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

نویسندگان

  • Muhammad Ali
  • Dae-Hee Son
  • Sang-Hee Kang
چکیده

Current transformer (CT) saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL) methods have brought a subversive revolution in the field of artificial intelligence (AI). This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs) to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combination of Hand-Crafted and Hierarchical High-Level Learnt Feature Extraction for Music Genre Classification

In this paper, we propose a new approach for automatic music genre classification which relies on learning a feature hierarchy with a deep learning architecture over hand-crafted feature extracted from an audio signal. Unlike the state-of-the-art approaches, our scheme uses an unsupervised learning algorithm based on Deep Belief Networks (DBN) learnt on block-wise MFCC (that we treat as 2D imag...

متن کامل

Supervised and Unsupervised Tumor Characterization in the Deep Learning Era

Computer Aided Diagnosis (CAD) tools are often needed for fast and accurate detection, characterization, and risk assessment of different tumors from radiology images. Any improvement in robust and accurate image-based tumor characterization can assist in determining non-invasive cancer stage, prognosis, and personalized treatment planning as a part of precision medicine. In this study, we prop...

متن کامل

Statistical-mechanical analysis of pre-training and fine tuning in deep learning

In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning—pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied wi...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Radial/elliptical Basis Function Neural Networks for Timbre Classification

This paper outlines a RBF/EBF neural network approach for automatic musical instrument classification using salient feature extraction techniques with a combination of supervised and unsupervised learning schemes. 829 monophonic sound examples (86% Siedlaczek Library [2], 14% other sources) from the string, brass, and woodwind families with a variety of performance techniques, dynamics, and pit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017